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I. INTRODUCTION

The purpose of this report is to illustrate the application of the

K-pulse concept to a class of distributed-parameter systems which can be

) modelled by finite lengths of non-uniform transmission lines. The
K-pulse of such a system is the excitation (input) waveform of finite
duration which yields response waveforms of finite duration at all

points of the system,

Numerical techniques using finite element methods are developed to
derive accurate approximations of the K-pulse and response waveforms for

uniform and non-uniform transmission lines. Comparison is made with

iR

exact results, where these can be obtained using other methods, to

illustrate the accuracy and utility of the method.

.

I1. THE R-MATRIX OF A TWO-PORT LINEAR SYSTEM

|| Let a two-port be represented symbolically as in Fig. 1, denoting

traveling wave amplitudes (voltages) at ports 1 and 2 by aj (inward

St 1. .
LI

traveling wave) and bj (outward traveling wave). Then the scattering

matrix (S) is defined:

E = (S) E . (l(a))
) b1 s11 s12\ /a1
§ = . (1(b))
§ b2 $21 $22 ay
|
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Figure 1. A linear two-port system,

When cascading two-ports, a more useful relation is given hy

a1 r11 ri2 b2

by r21 ra2 az
a matrix which relates the right- and left-traveling wave amplitudes at
port 1 to the corresponding right- and left-traveling amplitudes at port
2. If we denote this matrix by (R12), we see that the matrix (Rin)
relating the wave amplitudes at the first port to those at the nth port

is just the product of n-1 matrices:

(R1n) = (R12) (R23) . . . (Rp-1,n) . (3)

N
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To use the finite element method to analyze a non-uniform line, we first
find the (R) matrix for a representative element, and then use matrix
multiplication to find the resultant n-element approximation for the (R)
matrix of the continuous line.

We note in passing that Dicke [1] defined the matrix in Eq. 2 as
the T-matrix, but in order to avoid confusion with later usage of the
term "T-matrix" to represent the perturbation matrix (S-1) [2], we shall
adopt the notation of Kearns and Beatty [3], calling it the R-matrix,

The relation between (S) and (R) is

1 -S22
(R) = 1 . (4)
$21
s11 (s12s21 - s11522)
and
ra21 {r11r22 - ri2r21)
(S) = L . (5)
r11
1 -r12

When entering and exiting lines in Fig. 1 (at ports 1 and 2) are
assigned the same characteristic impedance, the scattering matrix (S) is
symmetrical (s12 = s21) and it follows that det (R) =1, ri1s12 = 1. In
such a case, if one "flips" ends of the two-port, exchanging right and

left ends, the new (R) is given by
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IIT. FINITE ELEMENT ANALYSIS OF LINE WITH DISTRIBUTED SHUNT CONDUCTANCE

It is customary to analyze distributed parameter networks by
utilizing lumped constant elements, such as breaking a transmission line
into lumped element T- or Pi-sections. However, we shall use delay
elements corresponding to infinitesimal lengths of transmission line
with fixed delay, which permits the final R-matrix of the system to be
expressed in terms of polynomials in the variable z = exp(-2st), where 7
is the element delay.

Referring to Fig. 2, let the continuous shunt loading be modeled by
N sections of loss-less line, each of length AL = L/N, with a lumped
shunt conductance G, for the nth section. We shall adopt the symbol dj
to indicate the amplitude (voltage) of the wave traveling to the right
(dextra) at the left end of the n'h section, and the symbol sp to denote
the amplitude of the wave traveling to the left (sinistra) at the same

ref 2nce plane. For a typical section:

d dp+1
= (Rp) , (7)
Sn Sn+l
eST 0 14wy, Wp,
(Rn) = t ] (8)
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where wy = G,/2Y,, one-half the normalized conductance of the nth shunt

load. Using the z variable, we can define the matrix (ﬁn): !
(Rn) = 271/2 (1+wp) (Rp) , (9) :
¢
where
1 Pn

Bl el R o 0

0 N
e S — —>
>
gY' §Y2 ;YN-I YN
__,.1%;; — AL —> < AL 5%5- .
e e — —o0 -—
bo bN
e L=NAL —>

Ly v

Figure 2. N-section model of finite transmission line,
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and P, = Gp(Gp + 2Yy)-1,

of Fig. 2 now becomes

()

(R)

where a

H

d
) ( N+1>
SN+1

N
TT (1+wg), and
n=0

(Ry) (ﬁz) . . . (Ry)

The relation between input and output planes

. (11)

p0
)(h . (12)

<R11(Z)
ZRZl(Z)

and the Rjj(z) are polynomials in z of order N-1.

(1-290)

Ry12(z)
:) s (13)
ZR22(Z)
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Now i;
4
P11(2) P12(2) B
(R)y = az-N/2 1t 12' , (14) -
P21(2) Poa(z) .
a
where
P11(z) = Ry1(2) + pyzRpy(2)
:U: PIZ(Z) = Rlz(z) + poszz(Z) (15)
Pa1(z) = =poRyp(z) + (1-2py)Rpq(2)
| Poa(2) = =poRyp(z) + (1-2pg)zRpp(2) .

Hence the Pij(z) are all polynomials in z of order N, Each represents

Il the Laplace transform of a train of N + 1 equally-spaced pulses with a
fixed net duration T = 2N 1t = 2L/C, independent of N; where C is the
wave velocity on the unloaded Tine,

Let us interpret these 4 finite duration waveforms for the

distributed parameter system, in the limit as N » =,

From Eqs. 10 and 13, it is easily shown that if sN+1 = 0, or the
exiting line in Fig. 2 is terminated in the characteristic impedance Z,
of the unloaded line, Pyj(z) is the transform of that special input

waveform Py1(t) of finite duration applied at the left end of the
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loaded 1ine which produces (a) a single attenuated (by a factor 1/a) and
lﬂ delayed (by T/2 = L/c) impulse at the exiting terminal, and (b) a left
reflected wave Ppj(t) with finite duration. 1If Pyj(t) is applied at the
right end of the line of Fig. 2 with the left end terminated in Zy, then
(a) the exiting wave at the left is the same attenuated and delayed
impulse as above, while (b) the right reflected wave produced is

-P12(t), also of finite duration. We thus define:

-1
IL {P11(2)} = K-pulse of network

P11(t)

. -1 -
- P21(t) IL {P21(2)} = T pulse of network jﬂ

-1
-P12(t) =1: {P12(2)} = TR pulse of network

-1
| Poa(t) "'t {Pop(2)} = /\'-ptnse (K-pulse under
time reversal) .

The property suggested for P22(t) means that the time-reversed from or

l! P22(T-t) is the K-pulse for the same line with all dissipative elements

replaced by n2gative equivalents, i.e., exchanging -G, for Gn. In a
Tossless system, we shall find that Pyi(t) = Poa(T-t).
- While the properties above hold for the P;j(t) of the line-lumped

approximate of any order N, we are interested in the limiting form of

these as N » =, and how accurately thic limit may be extrapolated from a

finite element model with N less than 50, These questions will be
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. addressed in Section 6, where computational results for various N are
compared with exact waveforms, derived for the uniformly loaded line in
Appendix II.

Values of the shunt loads Gp(N) must be determined before
calculations for the finite element model are initiated. These values
are derived in Appendix I for the line with uniform shunt conductance as
well as the 1ine with a linear taper of shunt conductance. For
simplicity, we have to this point assumed entering and exiting lines in
Fig. 2 have the same characteristic impedance as the unloaded line; the :f

case where these differ can easily be accommodated by adding at most two

simple R-matrices for junctions between dissimilar lines to the chain

product in Eq. 12, This case will be discussed fully in Section 5.
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IV, FINITE ELEMENT ANALYSIS OF LINE WITH NON-UNIFORM CHARACTERISTIC

IMPEDANCE

A line with continuously varying characteristic impedance is
modeled by N uniform line segments in cascade, the characteristic
impedances of the discrete elements matching that of the line as a
staircase function. If the phase velocity is non-uniform as well, the N
sections will be of dissimilar lengths, but constant phase delay. We
shall consider here the special case arising when a non-uniform line is
used to model transmission and reflection by a dielectric slab with a
varying dielectric constant. Referring to Fig. 3, the non-uniform line
is represented by N uniform sections with Z,, 8, the characteritic
impedance and phase constant of the nth section. The lengths (AL), of
the sections are chosen such that g, (al), = BAL = constant. Thus, the
propagation time T/2 through the non-uniform slab is composed of N equal
delays t for each section where T = 2NT,

The R matrix of the ntN element of Fig. 3 is given by

dn dn+1
= (Rp) R (17)
Sn Sn+l
where
eST 0 Kn 1-kp,
(Rn) = . (18)
0 e-ST 1-kq Kn

1
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Using z = exp(-2st), and

(Rn) = ¥y 2-1/2 (Rp) ;

= d d
| o, N
= o —o

1

I > By ALyl

L %o | s
' _ ldr L=NBAL J—I "

B At ity n

Y Ve

\ Figure 3. Lines with non-uniform characteristic impedance. a
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where T = (Zn4y - Z)/(Zpey *+ Zp)s Ky = (1 + 2,/2,41)/2.  As before
(see Eqs. 10-14),

d d
< °>= (R)( "”) . (20)
SO SN+1

where

1 r } :
(R) = az-N/2 <1~ 1°> (R) , (21) ;
° !

- - - - Ry1(2) Ry2(2) ‘
R) = (Ry) Rp) - . . (Ry) < H ! > . (22) ]
ZRZI(Z) ZR22(Z) .

Since the Rij(z) are polynomials in z of order N-1,

13
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(R)

where

P11(2)
P12(2)
P21(2)
Poa(2z)

R 2
Vo

dielectric slab,

P11(2)
a Z'N/2 1

PZI(Z)

Ry1(z) + TozR21(2)
Rya(z) + TozRpp(2)
roR11(2) + zRp1(2)
roR12(2) + zRp(2)

increases will be examined,

14

P12(2) (23)
P22(z) ’

(24)

As in the previous section, the Pij(z) are all polynomials in z of order
N; the interpretation of the 4 finite duration waveforms, each of fixed
net duration 2Nt = T, which are the inverse Laplace transforms of the
Pij(z) follows as in Section 3, preceding.

The values of T'p(N) and k,(N) must be determined from the
particular dielectric constant variation of interest before calculations
of the NN order approximants are initiated. These values are derived
in Appendix II for the line representing linear variation of e, in a

In Section 6, the convergence of the waveforms as N

Ml bl
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V. TERMINATION EFFECTS

In Section 3 and 4, the discrete element model was employed to
approximate continuous variation of conductivity or impedance of a
non-uniform line. Discontinuous changes in line parameters such may
arise at exiting and entering ports were not considered. In Section 3,
it was assumed that the line with distributed conductance was inserted
between lines of the same characteristic impedance with unloaded line.
The resulting R matrix of the system has unit determinant. If entering
and exiting lines have characteristic impedance Zg and Zy respectively,

the R matrix for the sys.em is given by (Ry).

(RT) = kq Ky (R) s (25)

where
kg = (1 + Zd/zo)/z and
rq = (Zq = Z5)/(Zq + Z) -

RRE" | BN

When /g = Z4, the determinant of the matrix (Ry) has unit determinant, a

property which holds whenever entering and exiting lines have a common

characteristic impedance. In Section 4, the characteristic impedance

15
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of entering and exiting lines were not generally the same, so that the

resultant R matrix of Eq. 2 does not have unit determinant, but a value

Ade i A SERAN W. % 2 R 8

of IN+1 . If the limiting input and exiting impedances of the line of
0

Fig. 3 are Zo and In+l, respectively, then we can obtain the Rt for new |

entering and exiting impedances Zs, Zd, respectively, by Eq. 24 where ]

ks = (1 + 25/25)/2, Tg = (Zy - Z5)/(Zy + 1),

kq (1 + Zd/ZN+1)/2, and Tq = (Z4q - ZN+1)/(Zd + InNe1)e

The resultant (R7) will have a determinant of 14/Zg., 1If 14 = I, #

entering and exiting lines have common characteristic impedance, then

the resulting (Ry) will have unit determinant,
With reference to Fig. 4, let the R-matrix of the distributed
parameter network referred to entering and exiting line characteristic

impedance Zg and Z4 be derived as outlined in Eq. 24. Then the K-pulse

of the system with load Zq and generator impedance Zg is given as
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Figure 4, A finite line inserted between entering line with Zg and
exiting line with 24,
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-1
K(t) =i {P11(2) + rdP12(z) + rgP21(z) + rdrsP22(2)} where Ty =

(Zq -21)/(2d + 2) and Ts = (ZIL -2g)/(ZL *+ Ig). Similar expressions can

Al At

be obtained for other response waveforms. Numerical results of K-pulse
and reflected pulses for a finite transmission lines inserted between

Tines with various Zg and Z4 will be illustrated in Sec. 6, ’
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VI. EXAMPLES

To illustrate simple examples of the K-pulse in a distributed
parameter system, we model the reflection of a plane wave at norma)l
incidence to a planar dielectric slab by a network in which a length L
of line with conductance 6 is inserted between two semi-infinite lines
with characteristic impedance Zs and Z4. The K-pulse and reflected
waveforms are then calculated using a N-section line-lumped
approximation to the finite transmission line., In the following,
various numerical results obtained for the approximations of the K-pulse
and response waveforms for uniform and nonuniform lines are presented.
Comparison is made with exact results, where these can be obtained using

other methods, to illustrate the accuracy and utility of the methods.

A. UNIFORM CONDUCTANCE G

Consider first a lossless line with length L shorted at one end
and appended to a semi-infinite line of twice the intrinsic impedance,
corresponding to a slab with dielectric constant e0 = 4, Thus, 6 = 0,
Lg = 275 and 14 = 0, where Zp is the intrinsic impedance of the lossless
slab.

In Fig. 5, the K-pulse consists of a unit impulse followed by a
second impu]ée of 1/3 with a delay of 2L/C, corresponding to the transit
time down and back the shorted line. The reflected waveform is the time

reversed negative of the K-pulse. 1If uniform shunt conductance loading

ol L

ol b

.4.“'1-, S




G is now introduced along with shorted line, such that the total j
conductance in the finite line equals the surge admittance, the K-pulse ’
and reflected pulse are shown in Fig. 6. As in the lossless case, a
unit impulse begins the input. Thereafter, signals returning to the .
input junction and reflected down the line segment are cancelled or !!
"killed" by subsequent input contributions until the final signal ]

reflected from the shorted end is returned. Since no further signal

travels down the line segment, the shorted section is at rest after

At = 2L/C. The K-pulse or "kill-pulse," has a duration equal to the

round trip time.

The waveforms of Fig. 6 are calculated using a N-section
line-lumped approximation to the uniform line. For comparison, the
exact results are also presented in Fig. 6, It is ohserved that *ne
K-pulse and reflected waveform converge rapidly to the exact res. . *< 4

N increases from N = 10 to N = 40,
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Fig. 7 and Fig. B present the K-pulse and reflected pulse for a uniform
lossy line inserted between two semi-infinite lines of different
characteristic impedance, corresponding to a planar slab separating two
half spaces with characteristic impedances Zg and 24 respectively. Fig.
7 shows the results for the symmetrical case (Zg = 24 = 2Z,), where 2o
is the intrinsic impedance of the unloaded line. It is again observed
that as N increases from 10 to 40, the N-section line-lumped
approximation rapidly converges to the exact results., Note that for the
symmetrical case, the left-reflected and right-reflected pulse are
identical. For the asymmetrical case shown in Fig. 8 (Zg = 274, 74 =

Z5), though, the left and right-reflected waveforms are not the same.

In both cases, the K-pulse and response waveforms have a duration time

equal to the round-trip transit time.
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Figure 7a. K-pulse and reflected waveforms for uniform lossy slab
(Ig = 24 = 2.0, k = 1)
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B. LINEARLY VARYING CONDUCTANCE G

Consider a finite line with linearly tapered shunt conductance,
with the total shunt conductance equal to the intrinsic impedance of the
unloaded line, Again, the continuous shunt loading is modeled by N
sections of lossless line, each of length AL = L/N, with a lumped shunt
conductance G for the nth section. Values of the shunt loads Gp are
determined in Appendix II. Figs. 9-11 present the K-pulse and response
waveforms for a linearly tapered line with various terminations, It is
observed that convergence to the K-pulse and response waveforms are

rapid and simple, even for lines with continuously varying parameters,
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C. LINEAR VARIATION OF CHARACTERISTIC IMPEDANCE L

. q

Numerical results of K-pulse and reflected waveforms for a line .

with continuously varying characteristic impedance are presented in this :

section., Waveforms are obtained using a model with N uniform line -;;j

~d

segments in cascade, the characteristic impedances of the discrete ]

elements matching that of the line as a staircase function. If the S

phase velocity is non-uniform as well, the N sections will be of o

o

dissimilar lengths, but constant phase delay. We shall consider here =
the special case arising when a non-uniform line is used to model

transmission and reflection by a planar dielectric slab with a linearly Ly

varying dielectric constant. The profile of the dielectric constant e, _ q;

is shown in Fig, 12, The two half spaces separated by the slab have a - 1

dielectric constant eg and e4 respectively, ;_;j

<

| €
| €r d
Gs I
I
MEDIUM I : SLAB | MEDIUM II

Figure 12. Profile of the dielectric constant for a planar dielectric
slab
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Fig. 13 shows the K-pulse and reflected pulse for a planar slab
with a dielectric constant e, linearly tapered from e, = €, to
eq = 2¢9. The waveforms shown in Fig. 13 are calculated using a
20-section line-lumped approximation to the planar slab, Calculations

using N = 40 shows that convergence to the K-pulse and reflected

waveform is rapid and simple.




, - e e
- o 1 [ PR
. ‘o ARERPEAT I )
. .
2y e

Coall

-

€ = €r, ~ n,
r —EN—-—(Zn—I)-&e"

Figure 13. K-pulse for line with continuously varying e,
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VII. CONCLUSIONS

In this report we illustrate the application of the K-pulse concept
to a class of distributed-parameter systems which can be modelled by
finite lengths of non-uniform transmission lines. The K-pulse of such
a system is the excitation (input) waveform of finite duration which
yields response waveforms of finite duration at all points of the
system., Numerical techniques using finite element methods are developed
to derive accurate approximations of the K-pulse and response waveforms
for uniform and non-uniform transmission lines. Comparison is made with
exact results derived for the uniformly loaded line, to illustrate the
accuracy and utility of the method.

The next logical step in this analysis is to address the inverse
problem, i.e., given the K-pulse and response waveforms, what are the
electrical parameters of the line. Kennaugh had claimed in an earlier
report [4] that synthesizing the parameters of the non-uniform line from
measured K-pulse and response waveforms was as equally tractable as the
direct problem, The key role of the K-pulse in factoring the system
before attempting synthesis has been clearly established in this

approach, which differs from the one-dimensional inversion techniques.

It is intended to investigate this problem as time and funds permit,
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APPENDIX 1

K-pulse for Uniform Lossy Line with Short-Circuit Termination.
Reflection by a lossy distributed-parameter network furnishes a

useful example for application of K-pulse concepts. As shown in Fig.

el b e Rl

A-1, a length 1 of lossy line with characteristic impedance 7j is

shorted at the far end, The reflection coefficient (voltage) at the
input terminal when connected to a uniform line of characteristic

impedance Z, is of interest.
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; | Figure A-1, lossy line configuration _
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We assume that line loss is modeled by a uniformly distributed
shunt conductance, such that the total shunt conductance over the length
1 is a specified fraction of the surge admittance of the line without

loss, i.e,

total Gshunt - g
1

The ratio of the surge admittance of the entire line (to the left

of reference plane) to that of the line is also a specified parameter:

The expression for the voltage reflection coefficient can be derived

as:

[k+st _/Kk+st
Ty = u tanh (St S ) - S ,
K + St K+ St
u tanh (St St ) + St

L
where S = jwt, 1 =Ty and C) is the velocity of a wave traveling the

finite line section in the absence of loss.
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Recognizing that

eZ - e-2

tanh (z) oz + o-2

S YRR

the voltage reflection coefficient Ty can be rewritten as

B i r 9
St+K St+K
[ St 1 Sty St St 41| -StV St
Ty = LuVStK e “Luy St J e .
i . Stk | STk
St Sty St St -1| -Sty St
[\ STHK "'1_] e -Luy St _j e

Multiply numerator and denominator by

St
e , one obtains
M
St - — St +1
——— ") /st(stK) =St | m————="7 ) _/5TETH)-51
v = \VSt(swk) /e St(stK) Je .
ST +1 St__ .1
H) /Se(St+K) =ST o /——— u | -/St(St#K)-St
St(St+K) e \/ST(SH-K) e

with a change of variable, S = St + a, where a = K/2, T, can be written

as:
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= fr—

As2-a2
e

It can be seen that the expressions in the numerator and denominator of

the expression given for I'y are entire functions of S, The inverse

Lapalace transform of the denominator gives the K-pulse K(t) while the
reflected pulse T(t) is the inverse transform of the numerator, i.e,
£ - s-a 1) ~(s-Vs2.,2) . s-a .1 4
edtk(t)+3K(s) = ed — ST e = m N
\ 52-22 s2-a2 ;
’
= o - h
‘\/sz-a2 -s ’ N
e e N
and
stoe) Br(s) _—,———;-a L) oV shaty o s e
™t s) = ed = T u e - u
e §2-32 s2-a2

Ry using the tables for inverse transforms:
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—— e « 5(t) + -1 t2.
V22 [2oge 1(ayt2-2¢) u(e)
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— . er §(t-1) + at I1 (aVt2-1) u(t-1)
S¢-a
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AR SRR

“ vy - .
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e R Io(aVt?-1) u(t-1)

m
]
—
w
]
w
N
3
[T}
~N
S
4+

> S(t) -
V-2t

41

RE SRR P S

- PRI S -
A AL, S G




e e e S e fat s Bas e et e A

L B Tk Sk Bl el Bl S S A R R U Nl A R

i - \/—2—7) - M U(t-1) + &(t-1)
V52 -

we obtain

<t?_l_>__%_ K ('%?)(;)—2
- V& - (&)’ | >

‘_ t _/t \2
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If we set 2t = 1, the total duration of R(t) = 1 and K(t) = 1, then é

the normalized K-pulse is given by )
- (p-1

K(t) = 8(t) - e o+1 ) 8(t-1) !
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and the reflected pulse is

R(t) =‘;—j— s(t) -e~Ks(t-1)

- . :
+e K /u 2t-1 + W Jp(KVt-t2) o
() | 222
t
L -

- 2, (KVt-tzj fu(t) - u(e-1)] . -

0

T
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APPENDIX II o

! ELFEMENT VALUES FOR DISTRIBUTED SHUNT CONDUCTANCE LINES "1
4

.

The relation between the R matrix and S matrix has been indicated q

in Sec. 2. The elements of the S matrix for the finite element model of

the distributed 1ine is given by

Yc - Y'in
S11 T Ye + Yip

n

S12 = S21 = 14517,

where Yc is the characteristic admittance of the line. For a typical

RSO V8

section of the line with a shunt conductance load G, Yin = Yc + Gp,

thus

i

|
!
o

S11 = _ -6n = _ =6n/Yc , o

-

- -y
-

1

and 3

1 + Gy S
. o
B
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In the case of a line with distributed shunt conductance, we assume that

the total shunt conductance Ggh equals to a specified fraction of the
characteristic admittance, i.e., Ggh = kYc. Then, the element value Gn

for a N section model is simply:

Gn = E%E for uniform Tossy line,

and

G = 2N ve for linearly tapered line.

N{N+1)

With the Gn given as above, it is straightforward to calculate the

R-matrix elements described in Sec. 3.
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- APPENDIX III

ELEMENT VALUES FOR VARIABLE CHARACTERISTIC IMPEDANCE LINES

The approximate K-pulse and response waveforms for a line with

continuously varying characteristic impedance are derived by using a

model with N uniform line segment in cascade, the characteristic K
o impedances of the discrete elements matching that of the line as a
staircase function. For the special case arising when a non-uniform

S 1ine is used to model transmission and reflection by a planar dielectric

slab with a linearly varying dielectric constant €r, the dielectric

=
[ 3
: constant e, for the nth section of the N-section model is simply 1

en = (82 - €1) (2n-1) + ¢ .
ot

where €1 is the dielectric constant corresponding to the entering line, B
. and € is that corresponding to the exiting line. With €n given as é
above, the element for the R matrix can be readily determined as :

described in Sec. 4.

P SRR

PR 4
Al
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